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Abstract This paper is concerned with the fixed-time
consensus problem of multiple chained-form systems
under matched perturbations. In this study, the leader
(whichcan be dynamic) only transmits its state and con-
trol input to its neighbors. For each agent, a decentral-
ized observer is designed to estimate the leader statein a
fixed-time. Contrary to finite-time schemes, the estima-
tion of the settling time does notrequire the knowledge
of the initial state, allowing a step-by-step design for
the controller. A decentralized observer-based control
protocol is proposed for each agent to solve the leader—
follower consensus problem in a fixed-time. This paper
ends with a numerical example showing the effective-
ness of the proposed approach.
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1 Introduction

Inrecent years, many researchers have worked on coop-
erative control of multi-agent systems (MAS) because
of its variety of applications in several areas, e.g., tar-
get tracking [1], flocking [2], swarming [3], rendezvous
[4], monitoring [5], formation control [6,7], etc. In
these works, it has been shown that the use of multi-
ple agents improves performances compared to a single
one.

From all the applications mentioned above, one
basic research topic in MAS is consensus, whose goal
15 to design control protocols that allow agents to reach
an agreement with a certain amount of interest through
local interaction [8,9]. Many consensus protocols have
been proposed when there is no leader or when the
leader is static [10, 11]. Nevertheless, it is obvious that
a leader (virtual or not) whose behavior is independent
of the other agents is required for many applications
(e.g., monitoring, formation control, etc.).

The leader—follower consensus problem also referred
as consensus tracking problem has been firstly intro-
duced in [12]. In [13], some decentralized tracking
control schemes have been developed for second-order
MAS considering directed interconnection topology. A
consensus tracking protocol has been proposed in [14]
for second-order MAS with matched perturbations. In
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[15], the leader—follower consensus problem for linear
MAS has been studied using decentralized impulsive
control.

It is clear that for the cooperative control of MAS,
one of the most important performance indexes is
the convergence rate. In fact, it is a significant cri-
terion which describes the effectiveness of the con-
trol algorithms. In [16], it has been shown that for
MAS represented by a simple integrator, the algebraic
connectivity, that is to say, the smallest eigenvalue
of the Laplacian graph, determines the convergence
time. In [17], the authors have proposed an approach
to increase this algebraic connectivity. However, lin-
ear algorithms have only focused on asymptotic con-
vergence, where the time to reach consensus can be
arbitrarily large. Nevertheless, in some practical cases,
finite-time convergence is very interesting in terms of
accuracy (which depends on the sampling period) and
robustness against perturbations. In [18], the authors
have introduced a terminal-sliding mode controller to
deal with the finite-time consensus problem of second-
order linear uncertain systems. In [19] the finite-time
tracking problem has been addressed for second-order
MAS. Some sliding mode controllers have been intro-
duced for the tracking control problem of one agent
in chained-form dynamics in finite-time [20], in fixed-
time [21] and in predefined-time [22]. In [23], a decen-
tralized finite-time controller has been proposed for a
group of nonlinear agents with strict-feedback struc-
ture. In [24,25], some finite-time agreement protocols
for multiple nonholonomic MAS have been given. In
[24], an interesting decentralized finite-time conver-
gent observer has been proposed for each agent to esti-
mate the state of the leader in finite-time. However,
it should be highlighted that in these studies, the esti-
mated bound of the settling time depends on the ini-
tial states of all the agents. Therefore, this bound can-
not be a priori estimated in decentralized architectures
since the initial state of all agents is not known by all
agents.

In this paper, the concept of fixed-time stability
15 used. This concept has been introduced to design
controller such that the convergence time is upper
bounded independently of the initial conditions of
the system [26-28]. Fixed-time consensus protocols
have been investigated for first-order switched MAS
with continuous-time and discrete-time subsystems
in [29], for first-order MAS with external perturba-
tions in [30-32], second-order dynamics in [33-353]
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and high-order linear dynamics in [36-38]. Few con-
sensus protocols consider nonlinear MAS (such as
chained-form dynamics), which can model dynamics
of robots. Furthermore, most of these controllers are
designed without ensuring a fixed-time stabilization.
Recently, a switching strategy has been introduced to
deal with the fixed-time consensus problem for multi-
ple nonholonomic agents [11]. However, in this work,
the leader was static and no uncertainty was consid-
ered.

In this paper, a new leader—follower consensus pro-
tocol for MAS with chained-form dynamics is intro-
duced. The main contributions of the proposed scheme
can be summarized as follows:

(1) Toremove the problem of the communication loop
due to the dependence of the control inputs of the
followers on the inputs of its neighbors in [11,33],
decentralized observers are designed to estimate
the leader state in a prescribed time which does
not depend on the initial state contrary to existing
finite-time observers,

(i1) a new decentralized observer-based control pro-
tocol is proposed for each follower to solve the
fixed-time consensus tracking problem when the
leader is dynamic,

(111) robustness properties against matched perturba-
tions is guaranteed,

(iv) an upper bound of the settling time, which only
depends on the controller parameters is estimated
independently of the initial conditions, contrary to
existing finite-time controllers.

This paper is organized as follows. In Sect. 2, some
concepts on fixed-time and graph theory are briefly
reviewed and the fixed-time leader—follower consen-
sus problem for MAS with chained-form dynamics
is presented. In Sect. 3, the decentralized fixed-time
observers and the decentralized observer-based con-
troller are derived to solve this problem. Simulations
results illustrate the effectiveness and the robustness of
the proposed scheme in Sect. 4. Finally, conclusions
are given in Sect. 5.

Notations Amin(P) and Amax (P) represent, respec-
tively, the smallest and largest eigenvalue of a square
matrix P. Matrix diag(a;, a2...an—1.ay) denotes
the corresponding diagonal matrix. For » = 0, func-
tion |_.'|JrJ 1s defined as LET& = (sign (& |El|)b, s

sign (6) |Ev17)” with§ = (51.....&x)" € RV,
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2 Problem statement and preliminaries

In this section, some useful concepts on fixed-time sta-
bility and graph theory are recalled. Then, the leader—
follower consensus problem for MAS with chained-
form dynamics is formulated.

2.1 Recalls on fixed-time stability

Considering system

E(t) = g(t. E(1))
£(0) = & (1

where & € B" is the state, g : BT x B" — R" isa
nonlinear function and f(z,0) = 0 for r = 0. Here, it
should be highlighted that solutions of (1) are under-
stood in the Filippov sense [39].

Definition 1 [27] The origin of system (1) is a globally
fixed-time equilibrium if it is globally asymptotically
stable and there is a positive constant T, = 0 such
that for all & € R", the solution £(z, &) of system (1)
is defined and £(r. &) € R" forr € [0, Tyay) and for
all 1 = Ta. E(1, Ep) = 0.

Lemma 1 [27] Suppose there is a candidate Lyapunov
function V : B" — BT such that

V(E) = —(pVP(E) + o VIE)" 2)
with p.o, p.g.k = 0, pk < 1 and gk = 1. Then, the
origin of system (1) is globally fixed-time stable with

1 1
T U —ph | oFgk—1)

Tivax 3
Remark 1 [40] It p = 1 — ;_11 and g = 1 + %1 with
i = 1, the bound of the settling time can be estimated
by a less conservative bound

T

2./ po

4

Thax =

2.2 Recalls on graph theory

Let us consider a group of N + | agents with one
leader and N followers. Among the N followers, the
communication topology can be represented by graph
G = {V,. &} where V = {1,.... N} defines the set of
nodes, corresponding to the followers, and £ € {V xV}

definesthe edge set. Alink (, i) € £, withi # j,exists
if agent i receive information from its neighbor j. The
adjacency matrix A = (g;;) € BN satisfies aij =0
if (j, i) € £anda;; = 0, otherwise. The corresponding
Laplacian matrix is given by L = (/;;) € BV N with
lii = ET:I, i i andljj = —ajj fori # j.The links
between the leader and the followers are characterized
by matrix B = diag(b1....,by) where b; = 0if the
leader state is available to follower i and where b; = 0
otherwise.

In this paper, it is assumed that the communication
topology among the N followers is undirected. It means
that the adjacency matrix A is symmetric.

2.3 Problem statement

Consider a multi-agent system consisting of a leader

(which could be virtual) labeled by 0, and N followers,

labeled by i € {1, ..., N}. The dynamics of the leader

is given by the following chained-form nonholonomic

system

£10() = &.00)

£20(t) = ur0(1)

Ex0() = & o) &2 0(1)

§400) = u2p(r) (5)

where & = [£10. £.0. £&.0.£4.017 € R? is the leader

state and 1y = [u) g, 2 9]” € R? is the leader control

input. The dynamics of the ith follower is as follows

£1i(1) = &.i(1)

£2i(1) = uri () +d1i(1)

£3i(1) = &4, (1)E2i (1)

£0.i(1) = w2 (1) + dai (1) (6)

where & = [£;.6,. 63, €117 € RY is the state

and u; = [uy . ug‘,']T € B2 is control input of the ith

follower. The unknown perturbation of the i th chained-

form chained-form is given by d; = [dl‘,-, dz‘,-] 4 e B2,
Hereafter, it is assumed that the following hypothe-

sis hold to derive the proposed fixed-time controller.

Assumption 1 Graph ¢ is undirected, fixed, con-
nected and there is at least one strictly positive param-
eter bj.

Assumption 2 The followers do not know the leader
control input up. Nevertheless, its neighboring agents
know its upper bounds i o and uz (. defined as follows
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ety ()] < 'y

iz 0(1)] < uyy (7
with NT‘(‘}", ugff[‘}" e RT.

Assumption 3 For each follower, the perturbation
d; (1) is unknown but it is bounded as follows

dy i ()] = d'™

ldz; ()] = 3™ (8)
: a a -

with dﬁ‘i“,d?ﬁ“ eRT.

Assumption 4 Tt is assumed that the leader state &2

satisfies the following condition

S200#0,  Vrell, Tyl 9

where T,, < Ty are known positive constants.

Remark 2 Assumption 1 is conventional to deal with
the leader—follower consensus problem. Hypotheses 2-
3 are not restrictive since the bounds of perturbations
and leader input can be estimated a priori for any sys-
tem. Assumption 4 is relatively not restrictive since
only the case & (f) = 0.%¥r = 0 is not considered
in the proposed scheme. Therefore, the motion plan-
ner for the leader should take into account this con-
straint (to avoid any loss of controllability). Indeed,
when &> (t) = 0, we loose controllability of the leader
dynamics since the state £3 0 cannot be controlled.
Since the followers track the leader, they also loose
controllability in this case.

Remark 3 Note that there exist several tools to plan the
trajectory for the leader. For instance, in [41], based on
nonlinear programming and flatness properties, a con-
strained receding horizon planner is applied to design
the state and the control input of the leader. One can
easily extend this work while taking into account con-
straints (7) and (9).

Here, the purpose of this paper is to derive a decen-
tralized observer-based controller u; (i = 1,....N)
for each follower, based on available information, such
that the leader—follower consensus problem is solved
in a fixed-time, in spite of matched external perturba-
tions. It means that there exists a positive constant T,
selected as T < Ty, such that ¥&(0). ¥i=1,.... N,

Jim 1§ (1) — §o()]| =0
() — & ()| =0, Vi =T (10)
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Remark 4 One can note that the settling time T does
not depend on the initial states of the agents. [t removes
some limitations on existing finite-time consensus
schemes for the application in decentralized architec-
tures. The settling time can be prescribed according to
some high-level policies (for instance in flexible man-
ufacturing systems, when an operation should be per-
formed before a deadline), or when cluster networks
or switching communication topologies are considered
[33].

3 Fixed-time leader—follower consensus protocol

For chained-form dynamics MAS under matched per-
turbations, we propose an observer-based consensus
protocol to deal with the leader—follower consensus
problem.

3.1 Decentralized fixed-time observer

To estimate the leader state in a prescribed time, decen-
tralized observers are designed for each followeri €
{1..... N} Indeed, the leader state is only available to
its neighboring followers (see the definition of matrix
B in Sect. 2.2). Let us introduce the following observer

él,r’ =&
N ﬂ , i
+ p1sign Zau (&1 j—Eri)+bi(Eo—Ei)
j=l

5

N
+o Zﬂ'ij(él,j — &)+ bi(ELe — )

j=1

. :\‘r - N .
& = psign Z“'U (&2 —E2i)+bi(E2 0 — &)
j=1

5

N
+ o Z ajj (€2 j — &) + bilErg — E2)

j=1
‘glr' = §4.Félr’
N . A A
+ p3sign Za.—; (&3 —&30)+bi(E0—E4)
j=l1
N ) A . .
+o3 | D @i —E ) +biGo—&0)
i=1
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. N . . A
£4; = pysign Zf-'i,f (64 —&4i)+Di(Ea0 —&ai)
j=1
N ) h ﬁ :
+ o4 Z aij(Eqj — Eai) + bi(Eap — &)
j=1
(11

where .‘:7;‘-‘,' (k = {1,...,4}) is the estimation of the
leader state & g for the ith follower, py and oy are pos-
itive constants, which will be given hereafter.
The fixed-time stabilization of the estimation errors
Ei=bi—&o (={l.... N}, k={l..... 4}
(12)

is introduced in the following theorem.

Theorem 1 Suppose that Assumptions 1-2 are satis-
fied. Ifthe gains of the decentralized observer (11) ver-
ify
e N
Gk=—f 3,Vk=1,---,4
(Ekmin (L + B) ) z

| hmax (L + B)
pr=¢€|———"
\/nm-m(L +B)

. | Amax (L + B
Py = “lin‘{l}! +e max { )
: 2hmin(L + B)
| Amax (L + B)
py=€|—
2;\--rnin(-‘[' +B)

max | Amax(L + B)

=u +e,|—mm— 13
pa =120 \/ min(L + B) ()

. i - PR . .
with ¢ = % then, for any initial condition, the esti-
mation errvors (12) converge to zero. An upper bound
of the convergence time can be given as

2
T, = T (14)

Proof Using (11), the observation error dynamics is
given by

. _ J,\‘r — _ —
i = &.i + pisign Zm;(«?l,;—fl,i)—f?iél,i
j‘:l

2

N
+or | D aiEr &) —biki
i=1

N
£ = psign Zﬂu (2 — £2.) — bikay
j=1
N ) 7 ) :
+o Z aij(&2j — &) — bik2i | —wio
j=1
Z h‘r - - -
&3 = pysign Zau (E3j — &3.4) — bikai
j=1
N ) ) ) :
+o3 Z aij(&s; — &) — biks;
j‘:l
+&6 — & 050
Z h‘r - - -
£4i = pysign Zdi,f (E4,j — &) — bia;
j=1
N ) ) ) :
+oy Z ij(Eaj — &) —biai | —u2o
i=1
(15)
Let us denote
. . . 9T
Bo=[&1 . En] (16)

Then, for &, & and &4, one can obtain

b=bpsign (L BE) o [+ B[

(17)

b= —psion (L +BE) —or [(L+ B[
—1(-‘1‘(} (18)

&= —pusign ((L+ BYE) —ou [(L + B)éf
—1(.'1(} (19)

Then, we perform three steps of making proof:

— Let us first study subsystems (17)—(18).
Consider the Lyapunov function for subsystem (18)
- -
Vi = S8l (L + B)E (20)

Its time derivative is given by

Vi = —mEI (L + B) sign ((L + B)éz)

+EI(L+B) (—03 {(L n B)ézf - 1;;1‘(,)

< —(p2 —uT$) (L + B)Ea |y
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1 ER-

— BaN"T2hmin(L + BTV

1 3

= —eVp® —€eV

Using Lemma 1 and (4), this inequality guarantees
that ég is fixed-time stable at the origin with the
settling time bounded by (1

After §3 converges to zero (i.e., whent = %L the

dynamics of £ reduces to

- -2
&1 =—prsign ((L+ B ) —on [(L+B)E |
(21)
Similarly to the previous step, the §1 dynamics con-

verges to zero. Indeed, considerthe Lyapunov func-
tion for system (21)

1 - -
V=S8 (L + BYG (22
Its time derivative along (21) is given by

Vo = —piE[ (L + B) sign ((L + B)él)

—af L+ [+ BE |
—p (L + B |y
— 01N F Qhmin(L + B)T V5

I A

3
= —€ Vz{r —€ V;
Hence, one can conclude that Eg converges to zero
and after that .§ | converges to zero in a fixed-time
bounded by 27.
— Let us now study subsystem (19).
The time derivative of the following Lyapunov

function
l- -
Vi = S8 (L + B)E, (23)

along the solution of (19) results in

Vs = —paEl (L + By sign ((L + B)Es)
+E(L+B) (—04 [+BE| - 1"2,0)

< —(ps — uS=) (L + B)Eqlly
3

L 3
— 04 NI (2hmin(L + BNV

1 3
< —eVit —elVy

Using Lemma 1 and (4), this inequality guarantees
that & is fixed-time stable at the origin with the
settling time bounded by (1

&\ Springer

ot B E oo ey () T
— After & and & converge to zero (i.e., whent > 7),

the dynamics of.g_v. reduces to
& = —p3sien (L + B)E3)
2
—os [+ B (24)

Similarly to previously, considering the Lyapunov
function Vy = %%T(L + B)& yields in the fixed-
time stable at the origin ofg_w. with the settling time
bounded by 27

Hence, one can conclude that the estimation errors (12)
converge to zero in a fixed-time bounded by 7,. O

Remark 5 The conditions (13) on the observer gains
are relatively strong since global information like N,
Amin (L + B) and Amax (L + B) is required to guarantee
the fixed-time convergence. Hence, each agent must
have some global knowledge about the communica-
tion topology similarly to existing works on fixed-time
consensus (see for instance [11,33,36,37]). One should
highlight that such global information is needed to pro-
vide an explicit estimate of the settling time (which is
a very interesting feature of the proposed scheme). It
is worthy of noting that if a prescribed convergence
time 7, 1s required, one can easily tune the observer
gains according to (13) to estimate the leader state.
Similarly to the work of [42], parameter ¢ should be
tuned to obtain a good compromise between robust-
ness against measurement noises (in the presence of
measurement noises, only a neighborhood of the origin
of the observation error system, which depends on the
size of noise and €, could be fixed-time stable) and suf-
ficiently fast estimation. When the observer gains are
selected, through conditions (13), the proposed scheme
can be considered as a decentralized one since each
neighboring agent only exchanges local information
during the process.

3.2 Decentralized fixed-time controller

From Theorem 1, one can conclude that
& = [Evi, E2,, 830, Eai]" = &0
for all + = T,. Hence, after time T,, each follower is

able to indirectly access to the state of the leader and
uses the estimate &; in the consensus protocol.
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Let us define the tracking errors as follows

eri = Exi — Eki = Ei — Ero — &k
(i={l,....,NL k={1,....4} (25)
From (5) to (6) and using Theorem 1, for each follower

i ={l.....,N}and forall r+ = T, the tracking error
dynamics reduces to

el =ea;
E I -
=) €ri =ul;i+dii—upLo
(26)
(Z2) €3 = eqiE20 + (eai + Esnleni

€4 =U2;+dri—Uap

Itis clear that dynamics (26) isdivided into two coupled
second-order subsystems (i.e., '} and £5). To solve the
fixed-time leader—follower consensus tracking control,
for each follower i = {1..... N}, the following two
steps are defined:

— Design u) ; such that the origin of subsystem X
is fixed-time stable with the settling time estimate
Ty = T.

— For t = max (T, T},). design uz; such that the
origin of subsystem X> is fixed-time stable with
the settling time estimate T'. Note that for t = T,
subsystem X becomes

€3; = ek
€4 = uz;+dri —uzg 27)

It is clear that for r = T, the two subsystems are
decoupled.

The following theorem presents the control strategy
which ensures the fixed-time leader—follower consen-
sus of multi-agent systems with chained-form dynam-
ics under matched external disturbances.

Theorem 2 Consider the multi-agent system (5)—(6).
Suppose that Assumptions 1-4 hold and the gains of the
decentralized observer (11) satisfv (13). The fixed-time
leader—follower consensus tracking control is solved
using the decentralized controllers

0,
Vi <T,
i = .
+Apyey Alay | 1
—ugl"— sign (s14) — Ly2sis + 2141712,
V=T,

(28)

with the sliding surface

s =exi + Lleail? + yier

1
+pleri1712 (29)
and
uzi =
0,
v < T,

¥ A3 el 25

1 : .
5. (é’:i,r'ElO + ————sign (.S'zj]) (30)

1
‘%11 - Ly2s2: + pals2,i1717.

vt e [T, Tyl

— by sign (e4;) .
W o= TM

with the sliding surface

52i = eq 20+ |leaif2 0]’
+ e+ piles 112 (31)

where y|, y», i1 and [1y are positive constants, a;
and b; are positive constants given hereafter, and the
switching time, which does not depend on the initial
conditions of the system, is explicitly defined as

2 2 2V2 22
Iy=T,+

NN RN RN

Proof We perform three steps of making proof. First, it

(32)

will be shown that the origin of subsystem X is fixed-
time stable with the settling time estimate T, under
the control law (28)—(29). Then, the protocol (28)-(31)
guarantees that the origin of subsystem X3 is fixed-
time stable with the settling time estimate 7. At last, it
will be proved that in spite of the presence of matched
disturbances, the fixed-time leader—follower consensus
control is solved.

— Letus first consider subsystem X. Following [27],
let us consider the Lyapunov function candidate
Vs = |51 ;|- Its derivative along the system trajec-
tories 1s,

Vs = é2,sign (s1)

_’_,,__1_.1,{.;__ €2; sign (514}

N lea,iléa, i sign (s1,i) + (33)

T
[Lex.i12 + yiers +mileri?|?
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Since
T
Ly2sii + pals1,i1717 sign (s1,)
31
= (y2ls1,il + pals1i17) T
one has
ésign (s1;) = (u1; +dy; —uyo)sign (s1;)
v+ 3meg;

2

1
— (2lsil + palsiilh)2
—(ai — (dv.i —u10) sign (s1.4))

Setting

a; = d"" +ul'y (34)
one can conclude that

Vs < —(nVs+ paVd)? (35)
From Lemma 1, it is clear that 51; = 0 for all
t=>T, + Ti + ﬁ

In sliding mode, ie., 5s1; = 0, the dynamics
becomes

él‘r_=_\-V1€1.f+f1lf1,f13“% (36)

Let us consider the Lyapunov function candidate
Ve = leyi|. Its derivative along the system trajec-
tories is

Vo= —(2 Vs + ELvdy: (37)
From Lemma 1, one can conclude that ) ; = 0 for
all t = T;. One should notify that if ¢; ; = 0 and
515 =0, then ez ; = 0.

— Letusnow consider subsystem X5 fort € [T;, Ty].
In this case, since €1 ; = e3; = 0, subsystem
X5 becomes (27). Note that Assumption 4 is intro-
duced to avoid singularity problem in the controller
design. Hence, let us set § = ey ;£ . Dynamics
(27) can be written as follows,

e3i =&

G = eqifr0+Ero(uri +dai —uzp) (38)
Setting
by = dF 4 (39)

and using the controller (30)—(31), similarly to the
previous step, one can easily deduce that ez ; = 0

for all
2 2 2J2 22

t=T=T+—+ + 1
VU7 Vi 7 VR
One should note that if e3 ; = O and s2; = 0, then
e4.; = 0 due to Assumption 4.

(40)
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— The last step is to study subsystem X5 for r = Tyy.

From subsystem X, one can obtain
€4 = —b;sign (eq;) +dai —u2o (41)

The controller u2; 1s used to reject the effect
of uncertain terms d>; and w2 . Let us consider
the Lyapunov function candidate V; = %eﬁ_i. Its
derivative along the system trajectories is

Vi = —biles ;| +es (dri — u2p)

— (b + d5 + uTEea.i|

0 (42)

A

I A

For the previous step, one has ez ; (Tay) = ea4.i(Tw)
= (. Hence, one can conclude that for any initial
condition, the tracking errors converge to zero in a
finite-time bounded by T and remains there in spite
of the presence of matched disturbances.

This concludes the proof. O

Remark 6 The design guidelines for our fixed-time
controller are as follows:

Select the parameter €. Similarly to the work of
[42]. parameter € should be tuned to obtain a good
compromise between robustness against measure-
ment noises and sufficiently fast estimation [T}, can
be computed according to Eq. (14)].

Design the observer gain parameters using Eq. (13).
Select the settling time T'. This parameter 7' should
be tuned to obtain a good compromise between
the control magnitudes and sufficiently fast con-
vergence for the tracking errors.

Select the switching time 7 as follows:

Tr-T,

—

'T_‘. =

It enables to divide the time interval [T;,, T;] into
two equal parts. This is useful for our two steps
procedure described in Sect. 3.2 [i.e., fixed-time
stabilization of system X' and system X5 described
in Eq. (26)].

Knowing T, and T, select the parameters y, y3,
prq and gy according to (32). A possible choice for
these parameters 1s the following:
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(T\' - T:’J)z

Select the control parameters a; and b; which sat-
isfy inequalities (34) and (39).

(/2 =p2=n/D =y = (43)
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Remark 7 It is worth pointing out that Theorem 2 pro-
vides an explicit estimation of the settling time, i.e.,
(40), that can be prescribed a-priori. This is one of
the key features of the results proposed in this paper,
unlike the finite-time design in the existing literature
[20]. In addition, Remark 6 provides a guideline for
users to tune the control parameters. Note also that the
fixed-time consensus problem for multiple nonholo-
nomic agents has been dealt with in [11]. However,
in [11], the leader is static and no uncertainty is con-
sidered in agent dynamics. To the best of the authors’
knowledge, the fixed-time leader—follower consensus
problem for multiple uncertain chained-form systems
with dynamic leader is studied for the first time in this
paper.

4 Simulation results

Here, the performances of the proposed observer-
based leader—follower consensus controller are studied
through numerical simulations.

Suppose that the MAS is composed of N = 6 fol-
lowers labeled by 1 —6 and one leader labeled by (. The
nonlinear dynamics of the leader (resp. the followers)
is given by (5) [resp. (6)]. Hereafter, the leader con-
trol input 1s set as up = [0.1sin(t). —0.5 cos(0.51)].
Each follower 1s affected by the unknown perturba-
tion d; = [().2 sin(&y ;). ().39_’)]. Therefore, one can
easily verify that Assumptions 2-3 are fulfilled with
U max = 0.1, w2 e = 0.5, dy ey = 0.2 and
2 max = 0.3.

Figure 1 shows the communication topology. One
can see thatitis fixed and connected. It is characterized
by the following Laplacian L and the matrix B which
describes links between the leader and the followers
given as follows

2 -10 0 0 -1 000000
12 -10 0 0 010000
[= 0 —-13 —-10 -1 B— 000000
0O 0-110 0/ 000000
0O 0 0 0 1 -1 000010
—-10-10-13 000000

From matrix B, it is clear that agents 1,3, 4 and 6 do not
have direct link with agent 0. Assumption 1 is satisfied.
The initial leader state is set as £,(0) = [3, 2, 2, (),S]T,
From the control input of the leader, one can see that
Assumption 4 is verified.

~
0)
T 0
CQ_) \_:_l‘ } Ko)

Fig. 1 Information flow among the leader and the followers

Here, the fixed-time consensus problem for the con-
sidered multiple chained-form systems is studied. It
should be noted that contrary to finite-time schemes,
the estimation of the settling time does not require the
knowledge of the initial state, allowing a step-by-step
design for the controller. It removes some limitations
on existing finite-time consensus schemes for the appli-
cation in decentralized architectures. The settling time
can be prescribed according to some high-level policies
or when cluster networks or switching communication
topologies are considered. For each agent, a decentral-
ized observer is designed to estimate the leader state
in a fixed-time. To the best of the authors knowledge,
even if the finite-time consensus problem for nonholo-
nomic systems have been already studied, an estimation
of the settling time, independently of the initial condi-
tions, has not yet been given for multiple chained-form
systems.

The parameter € is set as € = 2x. Therefore, using
(13), the parameters of the decentralized observer are
selected as p1 = p3 = 21, p» = 21.1, py = 21.5 and
oy = 52, ¥k = 1,...,4. The settling time is chosen
as T = 9s5. From (43), inequalities (34) and (39), the
parameters of the decentralized controller are chosen
asfollows: yy =8, )y =8,y =4, =4, a; =0.3
and b; = 0.8.

Using Theorem 1, the decentralized observer (11)
guarantees the stabilization of the estimationerrors (12)
to the origin in a finite-time bounded by T, = 1s. Fig-
ure 2 shows that the decentralized observers accurately
reconstruct the leader state for each agent before T,
where different initial conditions of the observer for
each agent are selected). Seeing the observation error
dynamics given in Eq. (15), it is clear that the evolu-
tion of él‘,- (resp. ég‘,') will look like the evolution of
.§_1.‘,- (resp. .§4-,-). Therefore, Fig. 2a (resp. Fig. 2b) looks
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Fig. 4 Control input for each agent

like Fig. 2c (resp. Fig. 2d). Contrary to [11,33], the
proposed fixed-time observer solves the communica-
tion loop problem due to the dependance of the control
inputs of the followers on the inputs of its neighbors.
The switching time in (30), which does not depend
on the initial conditions of the system, can be com-
puted using (14), i.e., T, = 5s. Hence, the origin of
the closed-loop system is globally finite-time stable
(contrary to many existing finite-time controllers where
only semi-global finite-time stability is guaranteed).
Furthermore, since T, does not depend on the initial
states of agents, the proposed protocol is decentralized.

Here, an upper bound of the settling time, indepen-
dently of the initial conditions, can be estimated using
(32),1.e., T = 9s from Theorem 2. The tracking errors
are depicted in Fig. 3. One can see that the tracking
errors between each follower and the leader converge
to zero before T. From Fig. 3, one can conclude that
using the proposed controller, the leader—follower con-
sensus 1s achieved in a prescribed time. The control
inputs for each agent are shown in Fig. 4. One can note
that the magnitude of control inputs may be large dur-

ing the transients to achieve a fast convergence of the
sliding surfaces given by the different steps of the con-
sensus protocol. Hence, the control parameters should
be adjusted to obtain a good compromise between mag-
nitude of the control inputs and settling time.

Based on the simulation results, one can see that the
proposed observer-based controller achieves the fixed-
time leader-follower consensus for MAS with chained-
form dynamics in spite of the presence of matched per-
turbations.

5 Conclusion

In this paper, the fixed-time consensus problem of mul-
tiple chained-form systems under matched perturba-
tions has been considered. Thanks to the proposed
decentralized observers, the leader state has been esti-
mated in a fixed-time. A decentralized observer-based
control protocol has been proposed for each agent to
solve the leader—follower consensus problemin a fixed-
time. In future works, it will be possible to investigate
fixed-time leader—follower consensus control strategies
for MAS with chained-form dynamics in consideration
of unmatched perturbations, noise measurement and
directed graphs.
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